Health Inequities in the Latino/Hispanic community

Enrique Caballero MD
Endocrinologist/Clinical Investigator
Director of the Latino Diabetes Initiative
Director, International Professional Education
Joslin Diabetes Center
Harvard Medical School
Boston, MA
The Latino/Hispanic population is the largest minority group in the country (50.5 million – 16% of total population - 2010 census).

The prevalence of type 2 diabetes is at least twice as high as that in the White population.

Diabetes care disparities – worse glycemic control, high rates of chronic complications.

Social and cultural barriers.

Limited cultural awareness and skills among providers.

Significant limitations in clinical practice – time, resources, support.

Limited comprehensive culturally oriented programs that address patient, provider and health system issues.
Race and Ethnicity: Definitions

Race
- Usually biological
- White, Black, American Indian (Native American)/Alaska Native (Eskimo, Aleut), Asian/Pacific Islander
- Often overlapping

Ethnicity
- Primarily social
- Independent of race
- Hispanic or Latino?

The US Hispanic/Latino Population

- Mexicans: 63%
- Puerto Ricans: 9.2%
- Central Americans: 7.9%
- South Americans: 7.9%
- Cubans: 3.5%
- Dominicans: 2.8%
- Spaniards: 1.3%
- Others: 6.8%

Insulin Resistance and Abdominal Obesity

Thrifty Genes + Lifestyle

Appetite and Satiety?

Beta and Alpha Cell Dysfunction

Incretin dysfunction?

Renal glucose handling?

Type 2 Diabetes

Frequent Chronic Complications

Increased Mortality rates

Socio-economic and Cultural factors

Caballero AE. Modified from Curr Diab and Endocrinology Reports 2007. 14:151-157
Type 2 Diabetes and its Complications in Minorities

- Disparate and Disproportionate prevalence of long-term complications of type 2 diabetes in minorities Vs NH Whites
 - lower leg amputations 2-4x
 - retinopathy and blindness 2-4x
 - stroke 2x
 - ESRD 4-6x

Metabolic control in the US
Percentage of patients achieving an A1c<7%

N=1334

A1c levels by ethnicity/race

NHANES 1999-2000

NH White

NH Black

Hispanics

Percentage of participants with diagnosed diabetes with an A1c ≥11% by ethnicity/race

NHANES 1999-2000

NH White: 1.7%
NH Black: 11.1%
Hispanics: 10.4%
Estimated lifetime risk of developing diabetes for individuals born in the United States in 2000

Narayan et al, JAMA, 2003
Prevalence of major CVRF in Latinos

Daviglus ML, et al. JAMA 2012: 308(17):1775-84

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No Risk Factors</th>
<th>1 Risk Factor</th>
<th>2 Risk Factors</th>
<th>≥3 Risk Factors</th>
<th>CHD</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-44</td>
<td>35.8 (34.0-37.7)<sup>c</sup></td>
<td>33.8 (32.2-35.5)</td>
<td>21.5 (20.1-22.9)<sup>c</sup></td>
<td>8.9 (8.0-9.8)<sup>c</sup></td>
<td>0.7 (0.5-1.2)<sup>c</sup></td>
<td>0.6 (0.4-0.9)<sup>d</sup></td>
</tr>
<tr>
<td>45-64</td>
<td>14.0 (12.9-15.3)</td>
<td>30.1 (28.6-31.7)</td>
<td>29.0 (27.5-30.6)</td>
<td>26.6 (25.2-28.5)</td>
<td>4.5 (3.9-5.2)</td>
<td>2.0 (1.6-2.5)</td>
</tr>
<tr>
<td>65-74</td>
<td>6.5 (4.7-8.8)</td>
<td>18.0 (15.2-21.1)</td>
<td>32.5 (28.7-36.5)</td>
<td>43.1 (39.4-46.8)</td>
<td>9.0 (7.2-11.3)</td>
<td>4.3 (3.2-5.8)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>19.4 (17.8-21.1)<sup>c</sup></td>
<td>34.1 (32.3-36.0)</td>
<td>29.2 (27.5-31.0)<sup>c</sup></td>
<td>17.2 (15.8-18.9)<sup>c</sup></td>
<td>2.0 (1.5-2.6)<sup>c</sup></td>
<td>1.2 (0.8-1.7)<sup>d</sup></td>
</tr>
<tr>
<td>Female</td>
<td>30.4 (28.9-32.0)</td>
<td>33.5 (31.9-35.1)</td>
<td>23.7 (22.3-25.2)</td>
<td>12.4 (11.5-13.4)</td>
<td>1.1 (0.8-1.5)</td>
<td>0.7 (0.5-1.0)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><High school</td>
<td>21.2 (19.3-23.2)<sup>c</sup></td>
<td>34.8 (32.9-36.7)</td>
<td>27.1 (25.5-28.9)<sup>d</sup></td>
<td>16.9 (15.5-18.4)<sup>c</sup></td>
<td>1.6 (1.1-2.4)</td>
<td>0.9 (0.6-1.2)</td>
</tr>
<tr>
<td>High school graduate</td>
<td>23.6 (21.8-25.5)</td>
<td>32.9 (30.7-35.1)</td>
<td>28.7 (26.5-31.1)</td>
<td>14.8 (13.3-16.4)</td>
<td>1.3 (1.0-1.7)</td>
<td>1.0 (0.6-1.5)</td>
</tr>
<tr>
<td>Some college</td>
<td>26.0 (23.9-28.3)</td>
<td>34.8 (32.2-37.6)</td>
<td>25.9 (23.6-28.3)</td>
<td>13.3 (11.8-14.9)</td>
<td>1.5 (1.0-2.1)</td>
<td>1.0 (0.6-1.5)</td>
</tr>
<tr>
<td>College degree</td>
<td>32.5 (29.0-36.3)</td>
<td>33.9 (30.8-37.2)</td>
<td>21.7 (19.4-24.2)</td>
<td>11.8 (9.9-14.1)</td>
<td>1.4 (0.9-2.0)</td>
<td>0.8 (0.4-1.3)</td>
</tr>
<tr>
<td>Annual family income, $</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20 000</td>
<td>21.1 (19.6-22.7)<sup>c</sup></td>
<td>34.9 (32.9-36.8)</td>
<td>27.9 (26.2-29.7)</td>
<td>16.2 (14.8-17.5)<sup>d</sup></td>
<td>1.8 (1.3-2.5)</td>
<td>1.3 (1.0-1.7)<sup>d</sup></td>
</tr>
<tr>
<td>20 000-50 000</td>
<td>26.4 (24.5-28.3)</td>
<td>33.4 (31.5-35.3)</td>
<td>25.7 (24.1-27.3)</td>
<td>14.6 (13.3-15.9)</td>
<td>1.2 (1.0-1.6)</td>
<td>0.7 (0.5-1.1)</td>
</tr>
<tr>
<td>>50 000</td>
<td>31.7 (27.0-36.7)</td>
<td>35.0 (31.5-38.7)</td>
<td>23.1 (20.0-26.4)</td>
<td>10.3 (8.2-12.8)</td>
<td>1.2 (0.7-2.0)</td>
<td>0.3 (0.1-1.1)</td>
</tr>
<tr>
<td>Not reported</td>
<td>26.0 (22.6-29.8)</td>
<td>32.3 (28.8-36.0)</td>
<td>27.6 (24.2-31.3)</td>
<td>14.1 (12.0-16.5)</td>
<td>1.4 (0.9-2.2)</td>
<td>1.0 (0.5-1.8)</td>
</tr>
</tbody>
</table>
Table 3. Number of Adverse CVD Risk Factors and Prevalence of Self-reported CVD (CHD and Stroke) by Age, Education, Income, Acculturation, and Lifestyle Factors Among Hispanic/Latino Participants (Age and Sex Adjusted)\(^a\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No Risk Factors(^b)</th>
<th>1 Risk Factor(^b)</th>
<th>2 Risk Factors(^b)</th>
<th>≥3 Risk Factors(^b)</th>
<th>CHD</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign</td>
<td>26.4 (25.1-27.8)(^c)</td>
<td>34.7 (33.3-36.0)</td>
<td>25.4 (24.2-26.7)(^d)</td>
<td>13.5 (12.5-14.4)(^c)</td>
<td>1.3 (1.0-1.8)(^e)</td>
<td>0.7 (0.5-0.9)(^c)</td>
</tr>
<tr>
<td>US</td>
<td>18.5 (16.2-21.0)</td>
<td>32.1 (29.4-34.9)</td>
<td>30.1 (27.4-33.0)</td>
<td>19.3 (17.0-21.8)</td>
<td>2.1 (1.4-3.1)</td>
<td>1.8 (1.2-2.8)</td>
</tr>
<tr>
<td>US residence >10 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>29.2 (27.1-31.4)(^c)</td>
<td>34.7 (32.7-36.8)</td>
<td>24.8 (23.1-26.6)</td>
<td>11.2 (9.9-12.7)(^c)</td>
<td>0.8 (0.5-1.1)(^c)</td>
<td>0.7 (0.4-1.1)</td>
</tr>
<tr>
<td>Yes</td>
<td>22.7 (21.3-24.1)</td>
<td>33.8 (32.3-35.3)</td>
<td>27.2 (25.9-28.6)</td>
<td>16.3 (15.2-17.5)</td>
<td>1.8 (1.3-2.4)</td>
<td>1.0 (0.8-1.4)</td>
</tr>
<tr>
<td>Language preference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>26.3 (24.8-27.9)(^c)</td>
<td>34.4 (32.9-35.8)</td>
<td>25.8 (24.6-27.1)</td>
<td>13.5 (12.6-14.5)(^c)</td>
<td>1.3 (1.0-1.8)(^e)</td>
<td>0.8 (0.6-1.1)(^d)</td>
</tr>
<tr>
<td>English</td>
<td>19.6 (17.5-21.8)</td>
<td>33.2 (30.7-35.9)</td>
<td>28.5 (26.1-31.1)</td>
<td>18.7 (16.6-20.9)</td>
<td>2.0 (1.4-2.8)</td>
<td>1.4 (1.0-2.0)</td>
</tr>
<tr>
<td>Immigrant generational status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>26.5 (25.1-27.9)(^c)</td>
<td>34.6 (33.3-36.1)</td>
<td>25.5 (24.3-26.8)(^e)</td>
<td>13.3 (12.4-14.3)(^c)</td>
<td>1.3 (0.9-1.8)(^e)</td>
<td>0.7 (0.5-1.0)(^c)</td>
</tr>
<tr>
<td>Second or higher</td>
<td>18.8 (16.6-21.2)</td>
<td>32.2 (29.6-34.8)</td>
<td>29.6 (27.0-32.3)</td>
<td>19.4 (17.2-21.8)</td>
<td>2.1 (1.5-3.1)</td>
<td>1.7 (1.1-2.5)</td>
</tr>
<tr>
<td>Age at immigration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US born</td>
<td>17.6 (15.4-20.0)(^c)</td>
<td>32.6 (29.9-35.4)</td>
<td>30.4 (27.6-33.2)(^e)</td>
<td>19.5 (17.2-22.0)(^c)</td>
<td>2.1 (1.4-3.1)(^c)</td>
<td>1.8 (1.2-2.8)(^c)</td>
</tr>
<tr>
<td>≤10 y</td>
<td>21.5 (18.2-25.2)</td>
<td>36.2 (31.4-41.3)</td>
<td>25.1 (21.0-29.7)</td>
<td>17.3 (13.6-21.7)</td>
<td>1.5 (1.0-2.3)</td>
<td>1.2 (0.6-2.3)</td>
</tr>
<tr>
<td>11-24 y</td>
<td>24.5 (22.7-26.4)</td>
<td>35.5 (33.6-37.5)</td>
<td>25.9 (24.1-27.9)</td>
<td>14.0 (12.7-15.4)</td>
<td>1.7 (1.1-2.5)</td>
<td>0.5 (0.3-0.8)</td>
</tr>
<tr>
<td>≥25 y</td>
<td>29.4 (27.2-31.7)</td>
<td>33.3 (31.4-35.3)</td>
<td>25.0 (23.3-26.7)</td>
<td>12.3 (11.2-13.6)</td>
<td>1.0 (0.8-1.3)</td>
<td>0.7 (0.5-1.0)</td>
</tr>
</tbody>
</table>

Daviglus ML, et al. JAMA 2012: 308(17):1775-84
Prevalence of major CVRF in Latinos

Table 3. Number of Adverse CVD Risk Factors and Prevalence of Self-reported CVD (CHD and Stroke) by Age, Education, Income, Acculturation, and Lifestyle Factors Among Hispanic/Latino Participants (Age and Sex Adjusted)\(^a\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No Risk Factors(^b)</th>
<th>1 Risk Factor(^b)</th>
<th>2 Risk Factors(^b)</th>
<th>≥3 Risk Factors(^b)</th>
<th>CHD</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low, 1-3</td>
<td>25.8 (24.4-27.2)(^c)</td>
<td>34.6 (33.2-36.0)</td>
<td>25.9 (24.7-27.2)</td>
<td>13.8 (12.8-14.8)(^c)</td>
<td>1.3 (1.0-1.8)</td>
<td>0.7 (0.5-1.0)(^c)</td>
</tr>
<tr>
<td>High, ≥3</td>
<td>20.7 (18.3-23.2)</td>
<td>32.2 (29.6-35.0)</td>
<td>28.7 (26.0-31.5)</td>
<td>18.4 (16.1-20.9)</td>
<td>2.0 (1.3-2.9)</td>
<td>1.7 (1.2-2.5)</td>
</tr>
<tr>
<td>Physical activity, higher 40%(^d)</td>
<td>Yes</td>
<td>25.9 (24.1-27.8)</td>
<td>35.3 (33.5-37.1)</td>
<td>26.4 (24.7-28.2)</td>
<td>12.5 (11.4-13.6)(^c)</td>
<td>1.4 (1.0-2.0)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>24.0 (22.4-25.6)</td>
<td>33.3 (31.8-34.8)</td>
<td>26.5 (25.1-28.0)</td>
<td>16.2 (15.0-17.5)</td>
<td>1.5 (1.1-1.9)</td>
</tr>
<tr>
<td>Diet score, higher 40%(^h)</td>
<td>Yes</td>
<td>26.1 (26.0-30.2)(^c)</td>
<td>33.9 (32.1-35.7)</td>
<td>25.1 (23.5-26.7)</td>
<td>12.9 (11.7-14.2)(^c)</td>
<td>1.1 (0.8-1.4)(^c)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>21.9 (20.5-23.3)</td>
<td>34.3 (32.6-35.9)</td>
<td>27.6 (26.2-29.1)</td>
<td>16.2 (15.1-17.4)</td>
<td>1.8 (1.3-2.4)</td>
</tr>
</tbody>
</table>

Daviglus ML, et al. JAMA 2012: 308(17):1775-84
Demographic and clinical characteristics between both groups, comparisons were done with t test in case of continuous variables and χ^2 in case of dichotomous variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controls (n=17)</th>
<th>At risk (n=21)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>14.18±2.3</td>
<td>13.33±2.7</td>
<td>0.31</td>
</tr>
<tr>
<td>Waist/hip ratio</td>
<td>0.79±0.08</td>
<td>0.88±0.11</td>
<td>0.003</td>
</tr>
<tr>
<td>Total % fat</td>
<td>24±6</td>
<td>42±9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Trunk fat</td>
<td>19±5</td>
<td>42±9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>101.5±7</td>
<td>116.6±12</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>68.6±6</td>
<td>70.9±6</td>
<td>0.23</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>142.06</td>
<td>149.76</td>
<td>0.318</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>58.82</td>
<td>108.29</td>
<td>0.004</td>
</tr>
<tr>
<td>HDL</td>
<td>42.00</td>
<td>37.52</td>
<td>0.162</td>
</tr>
<tr>
<td>LDL</td>
<td>89.24</td>
<td>93.50</td>
<td>0.484</td>
</tr>
</tbody>
</table>
Obesity and Endothelial Dysfunction in Hispanic Children

Panel A

Panel B

Caballero AE. Diabetes Care. 2008; 31:576-82
Control Group Overweight Group

sVCAM
ng/mL 1,000 800 600 400 200 0

sICAM
ng/mL 400 300 200 100 0

TNF-α
pg/mL 4 3 2 1 0

Adiponectin
μg/mL 2 1 0

PAI-1
ng/mL 10 8 6 4 2 0

hs-CRP
mg/mL 8 6 4 2 0

IL-6
pg/mL 4.5 3.5 2.5 1.5 0.5

White Blood Cell Count
White Cells (x10^3) 12 10 8 6 4 2

* indicates statistical significance.

Caballero AE. Diabetes Care. 2008; 31:576-82
The Latino Diabetes Initiative at Joslin

A comprehensive strategy that involves clinical care, patient education, community outreach, research and provider education

www.joslin.org/latino
Current structure of LDI

- Clinical Program
- Research Program
- Community Based Activities
- Professional Education
What Causes Disparities in Healthcare?

Patient
- Socio-economic status
- Education/Health literacy
- Health seeking behavior
- Cultural factors
- Mistrust

Provider
- Lack of cultural awareness
- Stereotyping or biases
- Language barrier
- Lack of resources

System
- Lack of culturally oriented programs
- Inadequate interpreter services
- Time pressures and resource constraints
- Lack of adequate training
- Limited Access
The health of individuals is inseparable from the health of communities
(Healthy People 2010)
Primary Factors That May Influence Diabetes Development and Care in Culturally Diverse Populations

- Acculturation
- Body image
- Cultural competence
- Depression
- Educational level
- Fears
- General family integration and support
- Health literacy
- Individual and social interaction
- Judgment about disease

Caballero AE. Am J Med 2011; 124, S10-S15
Primary Factors That May Influence Diabetes Development and Care in Culturally Diverse Populations

- Knowledge about the disease
- Language
- Myths
- Nutritional preferences
- Other forms of medicine (alternative)
- Physical activity preferences
- Quality of life
- Religion
- Socioeconomic status

Caballero AE. Am J Med 2011; 124, S10-S15
A true story:

64 y/o Hispanic woman
Patient does not speak English
Treated for Hypertension

Received a prescription for:

Lisinopril 10 mg.
Once/d.

Patient rushed to the ER due to severe hypotension
Prevalent Racial/Ethnic Differences Related to Diabetes Medications

- If my doctor told me that I would benefit from taking more medications, I would be willing to take more.
 - Caucasian (n=230): 10%
 - African American (n=279): 25%
 - Latino (n=167): 40%

 $P = 0.0008$

- If my doctor asked me to change my medication regimen, it would make me worry more about my health.
 - Caucasian (n=230): 30%
 - African American (n=279): 50%
 - Latino (n=167): 60%

 $P < 0.0001$

- I worry about the expense of my medications or glucose-monitoring supplies.
 - Caucasian (n=230): 40%
 - African American (n=279): 50%
 - Latino (n=167): 60%

 $P < 0.0001$

- I worry about becoming dependent on my medications.
 - Caucasian (n=230): 40%
 - African American (n=279): 50%
 - Latino (n=167): 60%

 $P < 0.0001$

- I worry about side effects from my medications.
 - Caucasian (n=230): 50%
 - African American (n=279): 55%
 - Latino (n=167): 60%

 $P < 0.0001$

How common is Low Health Literacy?

- 30 million Americans (14%) scored below basic on health literacy
 - Grasp of no more than the simplest, most concrete literacy skills

- 47 million (22% or 1 in 5) of the population at basic health literacy
 - Basic is defined as skills needed to perform simplest everyday literacy activities

Assessing Literacy: The “Newest Vital Sign”

- Validated tool
 - Correlates with TOFHLA

- English and Spanish version

- Screening tool
 - Score 0–1: High likelihood of limited literacy
 - Score 2–3: Possible limited literacy
 - Score 4–6: Almost always adequate

Evaluation of health literacy can guide education efforts

Rosa’s Story

La Historia de Rosa

Provider Manual English

Patient Booklet Spanish

Joslin Diabetes Center
INICIATIVA EN DIABETES PARA LOS LATINOS
Culturally Appropriate Translations
Practice Listening!

And observing!

- Patients are interrupted by the healthcare provider after an average of 23 seconds
- In only 28% of visits did patients completely express concerns
- In 25% of visits, the healthcare provider never asked about patient’s concerns

Goal setting

- **S** - Specific
- **M** - Measurable
- **A** - Attainable
- **R** - Realistic
- **T** - Time
Current structure of LDI

- Clinical Program
- Research Program
- Community Based Activities
- Professional Education
Time spent for a patient with diabetes

- Health Care Team: 1.3
- Work: 80
- Family: 285
- Person with diabetes: 365
Esto es mejor: Improving food purchasing selection among low-income Spanish-speaking Latinos through social marketing messages

Baseline Evaluation:

Analysis of the Grocery Receipt:
930 Calories per dollar
29 gr of Fat per dollar
150 gr of Carbs per dollar
5 gr of Fiber per dollar
21 gr of Protein per dollar
46500 cal - 50 USD

Other activities:
• Home Visits
• Supermarket tours
• Photovoice
• Rosa’s Story

Esto es mejor: Improving Food Purchasing Selection Among Low-income Spanish-speaking Latinos

Each dollar bought:

1st Supermarket
- 1320 Calories
- 84 grams of fat
- 135 grams of carbs
- 10 grams of fiber
- 9 grams of protein

2nd Supermarket
- 583 Calories
- 28 grams of fat
- 56 grams of carbs
- 4 grams of fiber
- 18 grams of protein
Esto es mejor: Improving Food Purchasing Selection Among Low-income Spanish-speaking Latinos - RWJ Project
Patient Care and Education

Joslin Carb Challenge

Developed by: Center for Innovation in Diabetes Education and the Latino Initiative. Supported by the Holtsinger, Sweely, Harold & Rebecca H. Gross Family, and Verizon Foundations.

Joslin Diabetes Center

© 2008-2012 Center for Innovation in Diabetes Education, Joslin Clinic, Joslin Diabetes Center
Health Care Professionals
Education

- Joslin CME programs
- Community Health Centers
- Medical Students
- Visitors Program
- National and International Meetings
- Publications
- Health Coach training program
The knowledge and interpersonal skills that allow providers to understand, appreciate, and work with individuals from cultures other than their own. It involves an awareness and acceptance of cultural differences; self-awareness; knowledge of patient’s culture; and adaptation of skills.

- American Medical Association
Cultural Competence

Purnell’s Model:

Person, Family, Community, Society

• Unconsciously incompetent
• Consciously incompetent
• Consciously competent
• Unconsciously competent
The ESFT Model

- Explanatory Model
- Social Risk for Noncompliance
- Fears/Concerns about the Medication
- Therapeutic Contracting/Playback
Model for Cross-Cultural Care:
A Patient-Based Approach

Awareness of Cultural and Social Factors → Elicit Factors → Negotiate Models → Implement Management Strategies

Tools and skills necessary to provide quality care to any patient we see, regardless of race, ethnicity, culture, class or language proficiency.
Resources – Cultural Awareness

http://medweb.med.harvard.edu

www.diversity.org

www.healthcarecommunities.org

www.nimhd.nih.gov

www.hispanichealth.org
Resources – Latinos with Diabetes

diabetes.org
www.joslin.org/latino
www.cdc.gov/minorityhealth
ndep.nih.gov
diabetes.niddk.nih.gov
THANK YOU